
antibiotics

Review

Role of Artificial Intelligence in Fighting
Antimicrobial Resistance in Pediatrics

Umberto Fanelli 1, Marco Pappalardo 1, Vincenzo Chinè 1, Pierpacifico Gismondi 1,
Cosimo Neglia 1, Alberto Argentiero 1, Adriana Calderaro 2, Andrea Prati 3 and
Susanna Esposito 1,*

1 Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of
Parma, 43126 Parma, Italy; umbertaker@msn.com (U.F.); marco.pappalardo@studenti.unipr.it (M.P.);
chinevincenzo@gmail.com (V.C.); pgismondi@ao.pr.it (P.G.); negliamino@gmail.com (C.N.);
alberto.argentiero@unipr.it (A.A.)

2 Microbiology and Virology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma,
Italy; adriana.calderaro@unipr.it

3 Department of Engineering and Architecture, University of Parma, 43126 Parma, Italy; andrea.prati@unipr.it
* Correspondence: susanna.esposito@unimi.it; Tel.: +39-0521-704790

Received: 28 September 2020; Accepted: 30 October 2020; Published: 1 November 2020
����������
�������

Abstract: Artificial intelligence (AI) is a field of science and engineering concerned with the
computational understanding of what is commonly called intelligent behavior. AI is extremely useful
in many human activities including medicine. The aim of our narrative review is to show the potential
role of AI in fighting antimicrobial resistance in pediatric patients. We searched for PubMed articles
published from April 2010 to April 2020 containing the keywords “artificial intelligence”, “machine
learning”, “antimicrobial resistance”, “antimicrobial stewardship”, “pediatric”, and “children”,
and we described the different strategies for the application of AI in these fields. Literature analysis
showed that the applications of AI in health care are potentially endless, contributing to a reduction in
the development time of new antimicrobial agents, greater diagnostic and therapeutic appropriateness,
and, simultaneously, a reduction in costs. Most of the proposed AI solutions for medicine are not
intended to replace the doctor’s opinion or expertise, but to provide a useful tool for easing their
work. Considering pediatric infectious diseases, AI could play a primary role in fighting antibiotic
resistance. In the pediatric field, a greater willingness to invest in this field could help antimicrobial
stewardship reach levels of effectiveness that were unthinkable a few years ago.

Keywords: artificial intelligence; machine learning; neural networks; antimicrobial resistance;
antimicrobial stewardship; pediatrics; children

1. Background

Artificial intelligence (AI) is an active and constantly evolving field of computer science research
aiming to develop systems that simulate human intelligence and can perform tasks that normally
require it such as visual perception, speech recognition, decision making, and natural language
processing [1,2]. Crucial factors that have driven AI evolution are the availability of data from
electronic health records (EHR) and advances in computational performance. These two factors are
closely related to complex mathematical functions such as machine learning (ML) or neural networks
(NN) [3]. This is even more relevant after the advent of deep neural network (DNN) architectures,
where the complexity (often referred to the number of parameters the networks need to learn) has
increased enormously in the last decade [4].

ML is a subset of AI that differs in its ability to change when presented with large amounts of data.
While expert systems are manually-defined based on the expertise of humans, ML does not require
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(unless in some limited case) human intervention and try to automatically learn rules, similarly to how
the human brain works. This property makes it less fragile and less dependent on human experts [5].
NNs, on the other hand, are mathematical informatics calculation models based on the functioning of
biological neural networks (human or animal), in other words, models consisting of interconnections
of information that are able to recognize the underlying relationships in a dataset. A DNN is composed
of several layers (usually more than five) of processing units that allow us to improve predictions from
the data, thus learning to understand them independently. A significant advantage of neural networks
is that their performance improves progressively as the size of the dataset increases [4], adapting to
changing inputs [6].

Currently, there are a large number of variables related to a patient’s care and medical history,
which make patient management complex. A recent publication estimated that within the current year,
200 times more medical information than an individual would be able to read in their lifetime will be
produced [7]. AI, by automatically managing this vast amount of data, can play a revolutionary role in
supporting clinical decision making. However, even today, most doctors still do not understand the
usefulness of AI and continue to make decisions based solely on personal experience and treatment
guidelines [3]. The aim of our narrative review is to show the potential role of AI in fighting the growing
phenomenon of antibiotic resistance, with particular reference to pediatric patients. For this reason,
we searched for PubMed articles published from April 2010 to April 2020 containing the keywords
“artificial intelligence”, “machine learning”, “antimicrobial resistance”, “antimicrobial stewardship”,
“pediatric”, and “children”, and we described the different strategies for the application of AI in these
fields. We considered this search period because it covers the vast majority of studies on the role of AI
in infectious diseases. In this review, we focused on the use of AI for pediatric infectious diseases in
developed countries.

2. History

In the 1960s, researchers at Stanford University developed the first problem solving program,
“Dendral”, whose purpose was to evaluate hypotheses. It was to be used by pioneers in organic
chemistry to identify unknown samples through their mass spectra. This first system was used
to identify the bacteria causing serious blood infections and recommend appropriate antibiotic
therapies [8]. However, the use of this system in clinical practice has been prevented by legal
problems [9].

The use of AI in healthcare achieved popularity in 2016, when AI software integrated into the
IBM Watson platform diagnosed a rare form of leukemia in a 60-year-old woman and proposed an
effective treatment [10]. Regarding the pediatric field, in 1984, one of the first articles on the use of
AI was published: it presented a computer-assisted medical decision making system called SHELP,
which aimed at diagnosing inborn errors of metabolism [11]. Approximately 30 years later, the IBM
Watson platform was successfully used at the Boston Children’s Hospital to provide valuable help in
the diagnosis and treatment of rare pediatric diseases [12].

Since 1984, there has been a surge in publications on the use of AI in various fields of pediatrics:
emergency management (automatic stratification of appendicitis risk [13], support for diagnostic
decisions [14], and as a framework for asthma exacerbation and early prediction of hospital care [15]);
pediatric oncology (comparative analysis of key genes for the development of anticancer drugs [16]
and gene expression profiling of children with neuroblastoma or lymphoblastic leukemia [17]) and
infantile neuropsychiatry (prediction of seizures in children with epilepsy [18], identification of motor
abnormalities [19], and identification of children with autism spectrum disorder based on facial
abnormalities [20]). In pediatric infectious diseases, there are many strategies for the application of
AI, from the development of new antimicrobial drugs to the correct diagnosis and management of
infectious diseases.
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3. Antibiotic Resistance in Pediatrics

Antimicrobial resistance (AMR) is defined as the ability of a microorganism (bacterium, virus,
or fungi) to prevent an antimicrobial agent from acting against it. AMR is considered a global public
health emergency for both epidemiological and economic reasons to the extent that the World Health
Organization has published an action plan on it. With regard to pediatrics, antibiotics are among the
most widely prescribed drugs in children both in hospitals and in the community. However, there are
many factors that can affect the use of these drugs. For example, many prescriptions are inappropriate or
unnecessary: antibiotics are often used in children suffering from viral infections or even non-infectious
diseases. In other cases, broad-spectrum antibiotics are prescribed at incorrect dosages or to treat
infections for which targeted therapy is recommended. The emergence of multi-drug-resistant bacterial
pathogens is thus strongly promoted, resulting in increased patient mortality, longer hospital stays,
and higher health care costs [21].

Furthermore, the development of antibiotics is no longer considered an economically sensible
investment for the pharmaceutical industry as antibiotics are used for relatively short periods of time,
unlike drugs used to treat chronic diseases; the development costs of the latter are, among other things,
much lower than those of antibiotics [22]. The result is that over the last 15 years, there have been
significant deficiencies in the development and availability of new antibiotics to combat emerging
resistance cases [21]. Implementation of containment strategies to address this rapidly growing
problem, an effort called antimicrobial stewardship (AS), is therefore essential. These strategies have
had a positive impact on adult patients, but only recently have they been used in the pediatric field [23],
where, considering the heterogeneity in the age and weight of the patients, targeted interventions
are needed [21]. As a consequence, the next section will report and discuss possible applications of
artificial intelligence against AMR.

4. Application Strategies for Artificial Intelligence (AI) Against Antibiotic Resistance

4.1. Prediction, Assessment and Diagnosis of Pediatric Infectious Diseases

A key aspect of fighting antibiotic resistance is the early recognition of the infectious pathology,
the distinction between pathologies on an infectious or non-infectious basis, and the proper
management of complications. Children have higher infection rates than adults and often exhibit
non-specific symptoms, which increases diagnostic uncertainty [21]. AI is, in this sense, a potentially
powerful weapon.

In 2017, Komorowski et al. presented a tool based on reinforcement learning, in which a virtual
agent learns a set of rules from a trial and error system to optimize them and maximize the expected
performance [24]. This tool extracted an amount of patient data that exceeded the life experience of
human physicians by many fold and learned the optimal treatment of sepsis by analyzing multiple
decisions by clinicians. Its use has resulted in lower mortality in patients for whom the doctors’ actual
decisions matched those of AI, showing the clinically reliable ability of this tool to customize sepsis
treatment and assist doctors in making real-time decisions [24].

A trial conducted in a German pediatric tertiary intensive care unit aimed to distinguish and
diagnose infectious sepsis from non-infectious forms of SIRS at an early stage based on the concept
that the two entities are characterized by very similar symptoms [25]. To this end, a diagnostic
model based on ML, specifically on a random forest approach, was developed, taking into account
44 variables available at the time of patient admission (baseline characteristics, clinical/laboratory
parameters, and technical/medical support). The model allowed for early recognition of all sepsis cases,
and a potential reduction of 30% in the use of antibiotics in patients with non-infectious SIRS was
calculated [25]. A further pediatric study was presented in 2019 by Liang et al., in which 101.6 million
data points from 567,498 outpatients were analyzed.

The primary diagnoses took into account 55 diagnostic codes that considered common pediatric
diseases. Among the most frequently found diagnoses were acute upper respiratory tract infections,



Antibiotics 2020, 9, 767 4 of 12

bronchitis, bronchopneumonia, and acute tonsillitis [26]. However, the system also showed strong
performance in the diagnosis of potentially life-threatening conditions such as meningitis. The analysis
was carried out using logistic regression classifiers to establish a hierarchical diagnostic system that
achieved excellent performance in all organ systems and subsystems, demonstrating a high level of
accuracy of the expected diagnoses compared to the initial diagnoses made by a medical examiner [26].

These studies show that ML-based applications can analyze EHR in a way similar to the
hypothetical deductive reasoning used by physicians and could therefore be applied for purposes such
as assessing triage procedures or assisting physicians in the diagnosis of complex or rare conditions.
A relevant advantage is the reduction in inappropriate testing and cost.

4.2. Appropriate Prescription of Antibiotics

In general, appropriate prescription of antimicrobials is a complex challenge, as it involves
selecting the appropriate therapy for the suspected pathogen, regulating the antimicrobial agent
concentration and frequency of administration, and identifying the appropriate route to ensure that
the actual drug levels reach the site of infection [27]. In the pediatric field, it must also be considered
that the types of infection and resistance vary significantly with age, and there is a wide variability in
dosage by age and weight [21].

One of the difficulties in prescribing antimicrobials is the need to sequentially adjust a patient’s
treatment as new clinical data become available. The lack of specialized healthcare resources and
the large amount of information to be processed make manual surveillance unsustainable; therefore,
hospitals are increasingly relying on automated decision support systems for the review of antimicrobial
prescriptions. Most prescription monitoring systems use a rule base acquired from published and
expert guidelines to identify inappropriate prescriptions and prevent potential adverse events. These
systems are often poorly defined and therefore generate a high rate of clinically unhelpful alerts.

To overcome this problem, systems based on ML have been developed. In 2014, Beaudoin et al.
described APSS, an antimicrobial monitoring system that, unlike the previous systems, was able to
learn new rules for prescription surveillance. This feature, combined with user feedback supervision,
was designed to enable APSS to self-improve its knowledge base in the long term. APSS showed an
indication learning capability that enabled an appropriate and clinically significant transition from
intravenous to oral antimicrobial therapy [28]. Generally speaking, in the NN literature, it is well
known that the so-called “static” NN systems (where the training of the NN is performed only once,
at startup) are often unsuitable in certain applications where the knowledge base changes over time.
Therefore, more appropriate learning strategies have been proposed such as reinforcement learning (as
opposed to the previously described, referred to as supervised learning) or incremental online learning.

The same APSS system was used in a subsequent study to identify inappropriate prescribing
practices not supported by local antimicrobial stewardship experts. The learning module was able
to extract clinically relevant rules by identifying inappropriate prescriptions not recognized by the
baseline system [27].

Starting from the assumption that the role of drug concentrations in the clinical outcomes of
children with tuberculosis is not clear (probably due to differences in pathology trends between children
and adults) and that the target concentrations for dose optimization are unknown, Swaminathan et al.
used a set of AI algorithms including random forests (an ML technique implemented by aggregating
the results of separated decision trees) to identify predictors of clinical outcome among 30 clinical,
laboratory, and pharmacokinetic variables.

In this way, the researchers found that pharmacokinetic variability is probably an important factor
in therapeutic failure and death in children with tuberculosis. They also identified drug concentration
thresholds predictive of poor outcomes and found a negative interaction between isoniazid and its
companion agents, pyrazinamide and rifampicin, within certain concentration ranges [29].

The problem of health care costs and staff shortages in the management of the appropriate
antibiotic prescription is particularly important in developing countries. For this reason, in 2018,
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a group of researchers hypothesized that by applying machine learning approaches to readily collect
patient data, it would be possible to obtain low-cost individualized predictions for targeted empirical
choices of antibiotics.

Blood culture data collected from a 100-bed children’s hospital in north-western Cambodia
between February 2013 and January 2016 were analyzed, and information on clinical characteristics,
demographic characteristics, and living conditions was acquired using 35 independent variables,
processed via machine learning algorithms to predict Gram stain results and whether bacterial agents
could be treated with common empirical antibiotic regimens. The results showed that modern ML
algorithms can amplify widely used logistic regression models by predicting antibiotic susceptibility.
In this case, the random forest approach worked particularly well, especially for the prediction of
resistance to ceftriaxone, the most widely used empirical antibiotic in patients in the study [30].

In addition, automated systems can play an important role in the real-time surveillance of the
adverse effects of antibiotic therapies, thus contributing to their appropriate prescription. Kilbridge et al.
showed the potential of these tools by implementing and evaluating an automated surveillance system
modified to detect drug-related (including antibiotic-related) adverse events in pediatric patients.
The study found that this type of system can be effective in detecting adverse effects in hospitalized
children [31].

When used as part of a decision support system, the best approaches based on AI and, more
recently, on ML should substantially increase the percentage of patients receiving effective empirical
antibiotic therapy while minimizing the risks of increased resistance selection.

4.3. Predicting Antibiotic Resistance

An area where the use of AI is proving useful is in predicting antibiotic resistance; thus, it is a
valuable aid to physicians in the care of their patients, considering that diagnostic tests and antibiotic
resistance assays often require prolonged periods of time. Moreover, empirical therapy is more complex
in the pediatric field than in adult medicine, as susceptibility differs with age [21]. Yelin et al. analyzed
a 10-year longitudinal dataset of over 700,000 community-acquired urinary tract infections, identifying
strong associations between resistance to six analyzed antibiotics and demographic characteristics,
past urine culture results, and the history of drug purchases by patients. They then developed a
personalized ML-based antibiotic resistance prediction model, which identified a higher peak risk in
infancy and childhood for some antibiotics (e.g., nitrofurantoin) [32].

Using an antimicrobial susceptibility dataset from the Microbiology Laboratory of a third-level
hospital in Greece, Feretzakis et al. proposed a methodology based on ML techniques by developing a
model that could predict susceptibility to a specific antibiotic based solely on the source of the sample,
the presumed site of infection, the Gram stain result of the pathogen, and previous susceptibility data.
The precision achieved by the system was 72.6% (a performance that could be substantially improved
by including patient clinical data), thus proving to be a potentially relevant aid to the physician [33].

A further method was developed to predict antibiotic resistance, although it operates through
as-yet unrecognized paths, uses algorithms based on genomic information to predict the bacterial
phenotype, and is enhanced by the continuous increase in the availability of high-density genomic data
for a wide range of microorganisms. An example of this application is VAriant Mapping and Prediction
of antibiotic resistance, a bioinformatics tool developed with machine learning techniques and with
which sequencing data from 3393 bacterial isolates of nine species containing antibiotic resistance
phenotypes for 29 antibiotics were analyzed. The researchers detected 14,615 variant genotypes and
constructed 93 association and prediction models that confirmed the mechanisms of genetic resistance
to known antibiotics, with an average accuracy of 91.1% for all antibiotic-pathogenic combinations [34].

A similar tool has been used to test over 10,000 isolates of M. tuberculosis collected from
16 countries on six continents, accurately predicting the point mutations associated with the emergence
of antibiotic resistance to first-line drugs [35].
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4.4. Artificial Intelligence and Pharmaceutical Industry

4.4.1. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are an example of functional natural biopolymers that are essential
for all multicellular organisms and have evolved to cope with bacterial invasion and infection [36].
Described as ancient evolutionary weapons and found in both the animal and vegetable kingdoms,
they play a fundamental role in the non-specific innate defense system that provides resistance to
infection without prior exposure to foreign pathogens. Direct antimicrobial activity is not limited to
membrane rupture mechanisms (through depolarization, the creation of pores that could cause the
release of cell contents or alterations in the lipid composition in the double layer of the membrane [37]),
but extends instead to cytoplasmic macromolecular synthesis, interference with membrane biosynthesis,
and metabolic functions.

Our knowledge of natural antimicrobials dates back to the end of the 19th century, when studies on
human phagocytes showed for the first time that some low molecular weight proteins were important
for immunity. Bacteria have probably been exposed to AMPs for millions of years and, with the
exception of some species (such as Burkholderia spp.), no widespread resistance has been reported,
making AMPs potentially very effective. These bioactive peptides not only act as direct antimicrobial
agents, but also represent important factors capable of strongly modulating the immune response
through a number of activities including increasing the production and release of chemokines by
immune and epithelial cells, exerting pro- and anti-apoptotic effects on different types of immune
cells and stimulating angiogenesis. Moreover, AMPs have additional antimicrobial effects as they can
suppress biofilm formation, stimulate chemotaxis, and mediate phagocytosis [38].

Currently, the most potent natural peptides known for their antimicrobial activity are the β hairpin
peptides typified by polyphemusin I from the horseshoe crab. Most natural cationic peptides are much
less active than synthesized peptides and are strongly antagonized by physiological concentrations of
mono- and divalent cations as well as polyanionic polymers. Therefore, new approaches are needed to
detect more effective and broad-spectrum, non-toxic sequences with optimal pharmacokinetics and
selectivity profiles [38]. Here, AI can be useful.

Studies based on a model AMP with known activity seek to identify peptides with higher or lower
antimicrobial activity; often via modification of a single amino acid within the peptide to identify
amino acid positions important for activity, disregarding the interactions between amino acids that
affect the overall three-dimensional conformation of the peptide [38]. On the contrary, AI models
capable of modeling interactions between entities (e.g., amino acids) by means of recurrent NN or
by graph-based architectures such as graph kernels or residue interaction networks, also known as
residue interaction graphs, protein contact networks, or residue contact networks [38].

Biophysical modeling studies aim instead to understand the activity of AMPs through molecular
dynamics simulations that may involve representation of the peptide, the surrounding solvent,
and membrane portions; the model obtained is inevitably limited by the complexity of natural systems,
since simplifications must be made in the computational approach [38].

Virtual screening, also called in silico screening, can be seen as a funnel approach in which one or
more calculation methods are used to select a subset of compounds from a candidate molecule screen
(usually in a molecular database) for experimental validation. The objective is to increase the probability
of identifying the active compounds. Depending on the information available for the system, the search
can be performed using either structure-based methods or ligand-based methods [39].

Among the examples of these applications is RiPPquest, a research database launched in 2014:
starting from the extraction of the genome based on mass spectrometry through algorithmic tools,
it has been able to discover a new natural antimicrobial peptide, informatipeptin from Streptomyces
viridochromogenes [40].

In 2018, Yoshida et al. used methods based on artificial NN models to improve the antimicrobial
activity of certain peptides against Escherichia coli. Starting from a natural AMP, they identified 44 highly
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potent peptides, and through conformational modification, they achieved an approximately 160-fold
increase in antimicrobial activity [41].

There are promising possibilities for the use of antimicrobial peptides due to their ease of synthesis,
mechanism of action, and broad spectrum of activity [38]. The use of AMPs in combination with
antibiotics is another avenue to explore. In vitro results were found using the diastereomeric peptide
against methicillin-resistant S. aureus and P. aeruginosa. The peptide showed synergistic or additive
effects when used in combination with antibiotics [41].

However, there are still some limitations to consider: toxicity, difficulties of administration,
high costs associated with large-scale production, and instability. Some concerns have also been
expressed about the emergence of cross resistance—although considered rare—through a mechanism
of bacterial membrane alteration [37].

4.4.2. Discovery of New Antibiotics

The great power of neural network-based models in the development of antimicrobial drugs
has recently been shown, thanks to a study conducted by Stokes et al. and published in 2020 [42].
These researchers developed a deep neural network model to predict growth inhibition of E. coli
using a collection of 2335 molecules. Second, they applied the model to several chemical databases
that included a total of >107 million molecules to identify potential active lead compounds against
E. coli. After ranking the compounds according to the scores predicted by the model, they finally
selected a list of candidates based on a predetermined predictive score threshold, the chemical structure
and the availability. This process made it possible to identify a molecule, a c-Jun N-terminal kinase
inhibitor renamed halicin, which was demonstrated to be a potent inhibitor of E. coli growth through
mechanisms different from those of conventional antibiotics. In addition, halicin has been shown to
be therapeutically effective against Clostridium difficile and pan-resistant Acinetobacter baumanii in
mouse models.

Researchers detected eight antibacterial compounds in addition to halicin that were structurally
distant from known antibiotics. In this way, they demonstrated how the use of AI can both decrease
the cost of identifying guide molecules and increase the rate of identification of structurally novel
compounds with the desired bioactivity in much less time than historically needed [42].

5. Limitations of Artificial Intelligence (AI)

AI has reached a level of accuracy in healthcare that was unimaginable until a few years ago,
but there are numerous limitations that still make it difficult to translate into care pathways. First,
the lack, especially in the pediatric field, of randomized clinical trials that demonstrate the reliability
and/or improved effectiveness of AI systems compared to traditional systems in diagnosing infectious
diseases or suggesting appropriate therapies creates a certain mistrust on the part of physicians
toward the use of systems based on AI. The AI culture itself is lacking in health care personnel:
many doctors—in our case, pediatricians—have never heard of AI [8].

Another limitation is the methodological bias that these systems may present as they are often
based on studies, databases, and guidelines from other countries that may not be representative of all
patients [43].

Another relevant limitation relies on the need for a large amount of data. Depending on the
complexity of the AI/ML architecture used, the demand of data might increase (e.g., deep neural
networks require a large amount of data). Even more, not only might the required data be numerous,
but also their quality should be high, in terms of both data cleaning and data variability (NN and DNN
are inclined to overfit data if the variability, e.g., in terms of variance, is limited). There are certain
applications also within the pediatric field, where the collection of a large amount of clean, certified,
and variable data might be hard, if not unfeasible.

Another topic concerns the protection of privacy and security: we can consider, for example,
the need for consent to the processing of personal health data by artificial intelligence systems [44].
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We must also think about how these systems should be integrated into the working environment
of doctors and nurses. It may be necessary for these systems to provide the evidence behind their
reasoning so that health professionals can decide whether to follow the suggestion.

Finally, ethical issues have to be considered such as the effects of de-qualification and desensitization
of doctors to the clinical context, job losses [45], or more advanced and unpredictable scenarios: in 2017,
for example, Facebook was forced to suspend an AI program because two systems began to communicate
with each other using a language unknown to humans [46].

6. Conclusions

AI-driven health interventions fit into four categories relevant to global health researchers:
(1) diagnosis, (2) patient morbidity or mortality risk assessment, (3) disease outbreak prediction and
surveillance, and (4) health policy and planning [47]. A study conducted by IBM in 2017 estimated that
90% of the data currently available worldwide on AI were generated in the previous two years. In the
healthcare sector, there has been a proliferation of sources generating these data; data are generated by
genomic analyses, collected from medical apps and wearables used in healthcare contexts, and stored
in databases containing medical records or retained in shared guidelines. This expansion of data
has allowed, together with technological advances, a revolution in AI. In 2019, Peiffer et al. detected
approximately 60 different ML applications that could be used in decision support for infectious disease
management [48]. The applications in health care are potentially endless, and specifically considering
infectious pediatric pathology, these systems could play a primary role in fighting antibiotic resistance,
contributing to a reduction in the development time of new antimicrobial agents, greater diagnostic
and therapeutic appropriateness, and, simultaneously, a reduction in economic and health personnel
costs. In addition, AI can be used for health hygiene, infection control, and vaccination coverage at
local, national, and international levels. Table 1 summarizes the application strategies for AI against
antibiotic resistance.

Table 1. Application strategies for artificial intelligence (AI) against antibiotic resistance.

AI Application in
Fighting Antimicrobial

Resistance
Definition Advantages Limitations

AI, health industry and
antibiotics

1. Antimicrobial
peptides

Natural functional
polymers, defensive
elements for all
multicellular organisms
to counter bacterial
invasion and infection.

- low risk of resistance
development;
- multiple antimicrobial
mechanisms of action;
- ease of synthesis thanks to AI.

- high toxicity to eukaryotic cells;
- high cost of large-scale
production;
- initial appearance of cross
resistance associated with
widespread use;
- onset of allergic reactions.

2. Discovery of new
antibiotics

Discovery or
development of
antibacterial agents
structurally different
from known antibiotics.

- ability to develop new
molecules with targeted and
broad-spectrum bioactivity;
- reduced time and labor costs
for development.

- need for training libraries to
contain molecules with
physicochemical properties
consistent with those of
antibacterial drugs yet
sufficiently diverse;
- need for selection of the most
appropriate approach
compound development and
minimizing toxicity.

AI, pediatric practice and
infectious diseases

Prediction of antibiotic
resistance

Using machine learning
(ML) techniques to
predict the susceptibility
of a microbial agent to an
antibiotic.

- ability to exploit genomic
information to predict the
bacterial phenotype (VAMPr);
- ability to help the clinician
select the correct antibiotic.

- lack of complete genotypes in
the NCBI database for each
microorganism
- need for integrating large
amounts of data (laboratory,
clinical, geographical)
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Table 1. Cont.

AI Application in
Fighting Antimicrobial

Resistance
Definition Advantages Limitations

Appropriate prescription
of antibiotics

Selection of the
appropriate therapy for
the suspected agent, the
appropriate dose and the
correct route of
administration.

- automated decision support
systems for the review of
antimicrobial prescriptions at
hospital level;
- ability to receive feedback for
automatic and continuous
improvement
- guideline-based operation.

- lack of staff in systems
management;
- need for available health funds.

Prediction of infection
severity

Automatic learning tools
for the recognition of
infectious pathology and
correct management of
complications.

- ability to distinguish
infectious diseases, including
sepsis, from non-infectious
diseases
- provision of decision support
for the doctor;
- ability to reduce mortality.

- need for accurate and complete
data collection;
- inability to obtain laboratory
data from the beginning of
illness.

Despite the field remaining nascent, AI-driven health interventions could lead to improved
health outcomes in low and middle income countries due to its low cost under certain conditions.
However, further studies are needed on ethical, regulatory, or practical considerations required for
AI widespread use. The global health community will need to work quickly to establish guidelines
for development, testing, and use as well as develop a user-driven research agenda to facilitate its
equitable and ethical use.
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